Long-read sequencing reveals the complex structure of extra $\operatorname{dic}(21 ; 21)$ chromosome and its biological changes

Kugui Yoshida-Tanaka ${ }^{1}$, Ko Ikemoto ${ }^{1}$, Ryoji Kuribayashi ${ }^{1}$, Motoko Unoki ${ }^{1}$, Takako Takano ${ }^{2,3}$, and Akihiro Fujimoto ${ }^{1}$
Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan, 2; Department of Child Health, Tokyo Kasei University, Tokyo, Japan, 3 Tokyo Metropolitan Tobu Medical Center for Children with Developmental Disabilities, Tokyo, Japan

Corresponding author: Takako Takano and Akihiro Fujimoto

Abstract

Complex congenital chromosome abnormalities are rare but often cause severe symptoms. The structures and biological impacts of such chromosome abnormalities have seldomly been analyzed at the molecular level. Previously, we reported a Japanese female patient with severe developmental defects. The patient had an extra dicentric chromosome 21 (chr21) consisting of two partial chr21 copies fused together within their long arms along with two centromeres and many copy number changes. In this study, we performed whole-genome transcriptional, and DNA methylation analyses, coupled with novel bioinformatic approaches, to reveal the complex structure of the extra chromosome and its transcriptional and epigenetic changes. Long-read sequencing accurately identified the structures of junctions related to copy number changes in the extra chr21 and suggested the mechanism of the structural changes. Our allele-specific transcriptome analysis showed the overexpression of genes in extra chr21. Additionally, allele-specific DNA methylation analysis of the long-read sequencing data suggested that the centromeric region of extra chr21 was hypermethylated, which would be associated with inactivation of one centromere in the extra chromosome. Our comprehensive analysis provides insights into the molecular mechanism underlying the generation of the extra chromosome and its pathogenic roles.

Background (Takano et al. EJMG (2020))

A Japanese 12-year-old female patient
$>$ At birth, her mother (40), father (44), and sister (2 years, 5 months) were all healthy.
> The patient exhibited severe psychomotor retardation and multiple dysmorphic features but was not diagnosed with Down syndrome.
Chromosome analyses revealed that the patient carried an extra chromosome 21 (chr21), which was dicentric and had two stalks on both end (47,XX,+dic(21;21)).
An analysis of SNPs showed that extra chr21 was of maternal origin
Whole genome sequencing (WGS) using short reads revealed that chr21 had regions with four and six copies

Methods

To reveal accurate structure of extra chr2
Analysis of allele frequency of SNVs in extra chr21
Whole genome sequencing (WGS) using long read (Oxford nanopore) of the patient and her parent Fluorescence in situ hybridization (FISH)
To understand pathogenic changes caused by the extra chr21
RNAseq for blood samples (the patient and her mother) using short read (Illumina) and long read (Oxford nanopore) Allele specific methylation analysis using long read (Oxford nanopore)

Patient's face

PHOTOGRAPHS PROHIBITED

Chromosome G-banding
U(ID M IB I

High-resolution G-banding De novo assembly of long reads ${ }^{1}$

Copy number of the patient's chr21

- Copy numbers of the chr21 were estimated from the Copy numbers of the chr21 were estimated
number of mapped reads within 500 bp bins. number of mapped reads within 500bp bins. Regions between boundaries were defined as copy number blocks and alphabetically labeled.

blue; 6 copy, yellow; five copy, pink; four copy, green; two copy

WGS of the patients and her parents

Identification of SVs $\begin{array}{ll}\text { - Fifteen SVs were detected, in which five } & \text { Breakpoint sequences were } \\ \text { were not detected by short reads. } & \text { reconstructed by de novo assembly }{ }^{1}\end{array}$

Visualization of novel SVs

Analysis of allele frequency of SNVs in chr21

Novel SVs were located within repeat region or had complex structures
Among the identified SVs, seven had insertions 10 bp , five had 2-100 bp homology in the breakpoints, and one had no insertion or homology. Based on these results, we concluded that seven SVs were caused by FoSTeS/MMBIR, four by alt-EJ, and one by NHEJ ${ }^{2}$. These findings suggest that multiple mechanisms generated the SVs in extra chr21. High allele frequencies in a 2.3 Mbp region from the pericentromeric region (arrow) was observed. This BAF pattern (Pattern 3 in Fig. S4B) indicates that the pericentromeric regions in both normal chr21 and extra chr21 have the same haplotype.

Estimated structure of extra chr21

A model of the extra chr21 formation

The ratio was significantly higher in the twourcoopy region $\begin{gathered}\text { Toup } \\ \text { six-copy }\end{gathered}$ than in the four-copy regions and in the four-copy regions than in the two-copy regions

Haplotype specific methylation analysis using long reads

In chr21, many CpG sites exhibited low P values compared to those in other chr
A significantly higher number of maternally hypermethylated CpG sites were in the centromeric and oscillated regions.

Conclusion

- Long-read sequencing identified the structures of junctions related to copy number changes in extra chr21 and suggested the mechanism of the structural changes.
- The transcriptome analysis showed the overexpression of genes in extra chr21.
- Allele-specific DNA methylation analysis of the long-read sequencing data suggested that the centromeric region of extra chr21 was hypermethylated, which would be associated with inactivation of one centromere in extra chr.
- Our comprehensive analysis provides insights into the molecular mechanism underlying the generation of the extra chromosome and its pathogenic roles.

